A Remark on the Inverse Hölder Inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another View on the Hölder Inequality

Every diagonal matrix D yields an endomorphism on the n-dimensional complex vector space. If one provides the n with Hölder norms, we can compute the operator norm of D. We define homogeneous weighted spaces as a generalization of normed spaces. We generalize the Hölder norms for negative values, this leads to a proof of an extended version of the Hölder inequality. Finally, we formulate this v...

متن کامل

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

A Remark on the Mandl’s Inequality

So, we have (1.2) p1p2 · · · pn < (pn 2 )n (n ≥ 9), where also holds true by computation for 5 ≤ n ≤ 8. In other hand, one can get a trivial lower bound for that product using Euclid’s proof of infinity of primes; Letting En = p1p2 · · · pn−1 for every n ≥ 2, it is clear that pn < En. So, if pn < En < pn+1 then En should has a prime factor among p1, p2, · · · , pn which isn’t possible. Thus En ...

متن کامل

A remark on the slope inequality for fibred surfaces

We define a fibration, or fibred surface to be the data of a smooth projective surface X with a surjective morphism f to a smooth complete curve B. We also assume that f has connected fibres. Recall that such a morphism is automatically flat and proper, and that the general fibre of a fibration is smooth. The genus of the general fibre is called genus of the fibration. Define a (-1)-curve (resp...

متن کامل

Remark on Ozeki Inequality for Convex Polygons

This paper gives proof of a discrete inequality that represents Ozeki’s inequality for convex polygons and its converse. The proof is based on determining eigenvalues of one nearly tridiagonal symmetric matrix.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1993

ISSN: 0022-247X

DOI: 10.1006/jmaa.1993.1387